Internet Traffic Prediction Using Recurrent Neural Networks
نویسندگان
چکیده
Network traffic prediction (NTP) represents an essential component in planning large-scale networks which are general unpredictable and must adapt to unforeseen circumstances. In small medium-size networks, the administrator can anticipate fluctuations without need of using forecasting tools, but scenario where hundreds new users be added a matter weeks, more efficient tools required avoid congestion over provisioning. hardware resources however limited; hence resource allocation is critical for NTP with scalable solutions. To this end, paper, we propose by optimizing recurrent neural (RNNs) analyse patterns that occur inside flow time series, predict future samples based on history was used training. The predicted proposed RNNs compared real values stored database terms mean squared error, absolute error categorical cross entropy. Furthermore, training those from other techniques such as auto-regressive moving average (ARIMA) AdaBoost regressor validate effectiveness method. It shown RNN achieves better performance than both ARIMA when employed.
منابع مشابه
Identification and Prediction of Internet Traffic Using Artificial Neural Networks
This paper presents the development of an artificial neural network (ANN) model based on the multi-layer perceptron (MLP) for analyzing internet traffic data over IP networks. We applied the ANN to analyze a time series of measured data for network response evaluation. For this reason, we used the input and output data of an internet traffic over IP networks to identify the ANN model, and we st...
متن کاملInternet Traffic Forecasting using Neural Networks [IJCNN1337]
The forecast of Internet traffic is an important issue that has received few attention from the computer networks field. By improving this task, efficient traffic engineering and anomaly detection tools can be created, resulting in economic gains from better resource management. This paper presents a Neural Network Ensemble (NNE) for the prediction of TCP/IP traffic using a Time Series Forecast...
متن کاملMIMO Channel Prediction Using Recurrent Neural Networks
Adaptive modulation is a communication technique capable of maximizing throughput while guaranteeing a fixed symbol error rate (SER). However, this technique requires instantaneous channel state information at the transmitter. This can be obtained by predicting channel states at the receiver and feeding them back to the trasnmitter. Existing algorithms used to predict single-input single-output...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EAI endorsed transactions on industrial networks and intelligent systems
سال: 2022
ISSN: ['2410-0218']
DOI: https://doi.org/10.4108/eetinis.v9i4.1415